

10427 Cogdill Road, Suite 500 Knoxville, TN, 37932, United States

Certificate of Analysis

Dec 29, 2020 | Green Spectrums

46 Foster Road, Suite 1 Hopewell Junction, NY, 12533, US

Kaycha Labs

Matrix: Derivative

Sample: KN01223002-001 Harvest/Lot ID: N/A Seed to Sale #N/A Batch Date :12/16/20

Batch#: CBN100 Sample Size Received: 7 ml

> Retail Product Size: 30 Ordered: 12/16/20

Sampled: 12/16/20

Completed: 12/29/20 Expires: 12/29/21 Sampling Method: SOP Client Method

TESTED

Page 1 of 2

PRODUCT IMAGE

SAFETY RESULTS

Heavy Metals

Microbials

Mycotoxins

Solvents

Filth

Water Activity

Moisture

MISC.

Pesticides CANNABINOID RESULTS

Total THC

Total CBD 0.000%

Total Cannabinoids 1.011%

CBDV	CBDA	CBGA	CBG	CBD	THCV	CBN	D9-THC	D8-THC	СВС	THCA
ND	ND	ND	ND	ND	ND	1.010%	ND	ND	ND	ND
ND	ND	ND	ND	ND	ND	10.110 mg/g	ND	ND	ND	ND
0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
%	%	%	%	%	%	%	%	%	%	%
	ND ND 0.01	ND ND ND 0.01	ND ND ND ND ND ND 0.01 0.01 0.01 0.01	ND ND ND ND ND ND ND ND ND 0.01 0.01 0.01	ND ND ND ND ND ND ND ND ND ND ND ND 0.01 0.01 0.01 0.01 0.01	ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 0.01 0.01 0.01 0.01 0.01	ND ND ND ND ND 1.010% ND ND ND ND ND 10.110 mg/g 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ND ND ND ND ND 1.010% ND ND ND ND ND 10.110 mg/g ND ND ND ND ND mg/g ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ND ND ND ND 1.010% ND ND ND ND ND ND 10.110 mg/g ND ND ND ND ND ND 0.01 </td <td>ND ND ND ND ND 1.010% ND ND ND ND ND ND ND ND 10.110 mg/g ND ND ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01</td>	ND ND ND ND ND 1.010% ND ND ND ND ND ND ND ND 10.110 mg/g ND ND ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Cannabinoid Profile Test

Analyzed by Weight Extraction date : Extracted By:

Analysis Method -Expanded Measurement of Uncertainty: Flower Matrix Reviewed On

d9-THC:12.7%, THCa: 9.5%, TOTAL THC 11. 1%. These uncertainties represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor k=2 for a normal distribution.

Instrument Used: HPLC E-SHI-008

Batch Date: 12/23/20 08:20:47

Analytical Batch -KN000220POT Reagent Dilution Consums. ID 120320.R02

121720.R07 Full spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection (HPLC-UV). (Method: SOP.T.30.050 for sample prep and Shimadzu High Sensitivity Method SOP.T.40.020 for analysis.).

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sal Pastor, Ph.D.

Lab Director

State License # n/a ISO Accreditation # 17025:2017

12/29/2020

Signature

Signed On

10427 Cogdill Road, Suite 500 Knoxville, TN, 37932, United States

Kaycha Labs

CBN Oil

Matrix : Derivative

Certificate of Analysis

Green Spectrums

46 Foster Road, Suite 1 Hopewell Junction, NY, 12533, US

Telephone: 8454472240

Email: greenspectrumsny@gmail.com

Sample: KN01223002-001

Harvest/LOT ID: N/A

Batch#: CBN100

Sampled: 12/16/20

Ordered: 12/16/20

Sample Size Received: 7 ml

Completed: 12/29/20 Expires: 12/29/21 Sample Method: SOP Client Method

TESTED

Page 2 of 2

Terpenes

TESTED

Terpenes	LOD	Units		Result (%)	Terpenes	LOD	Units		Res (%)	ult	
ALPHA- PHELLANDRENE	.02	%	ND		ISOPULEGOL	.02	%	ND	ND		
ENCHONE	.02	%	ND		CIS-	.02	%	ND	ND		
GAMMA-TERPINENE	.02	%	ND		NEROLIDOL	.02	/0		ND		
GERANIOL	.02	%	ND		3-CARENE	.02	%	ND	ND		
GERANYL ACETATE	.02	%	ND		FENCHYL	.02	%	ND	ND		
GUAIOL	.02	%	ND		ALCOHOL HEXAHYDROT	. 02	%	ND	ND		
IMONENE	.02	%	0.578		HYMOL	.02	%	ND	ND		
INALOOL	.02	%	ND		EUCALYPTOL	.02	%	ND	ND		
IEROL	.02	%	ND		ISOBORNEOL	.02	%	ND	ND		
CIMENE	.02	%	ND								
ARNESENE	.02	%	ND								
ULEGONE	.02	%	ND				$\prec \prec \times$		$\times \times$	\mathcal{M}	
ABINENE	.02	%	ND		8	Ter	penes			TESTE	
ABINENE HYDRATE	.02	%	ND			101	penes			IE2 IEI	
ERPINEOL	.02	%	ND		8						
ERPINOLENE	.02	%	ND			17		Λ	ΛI		
RANS- ARYOPHYLLENE	.02	%	ND		Analyzed l	by W	/eight Ex	ctraction da	ate	Extracted By	
RANS-NEROLIDOL	.02	%	ND		138	1.0	02009g 12,	/24/20 12:12:20		138	
/ALENCENE	.02	%	ND		Applyaia Ma	athed C	OD T 40 000	. / \			
CEDROL	.02	%	ND		Analysis Method -SOP.T.40.090 Analytical Batch -KN000221TER Instrument Used : E-SHI-109 Terpenes						
LPHA-HUMULENE	.02	%	ND								
LPHA-PINENE	.02	%	ND								
ALPHA-TERPINENE	.02	%	ND		Running On: 12/28/20 15:35:31 Batch Date: 12/24/20 11:20:45						
BETA-MYRCENE	.02	%	0.025		Batch Date	: 12/24/	20 11:20:45				
BETA-PINENE	.02	%	ND		Reagent		Dilution	C	nsums.	ID.	
BORNEOL	.04	%	ND		Reagent		Dilution		msums.	ID.	
AMPHENE	.02	%	ND								
AMPHOR	.04	%	ND							Liquid Injection	
ARYOPHYLLENE OXIDE	.02	%	ND		(Gas Chromatography – Mass Spectrometer) which can screen 38 terpenes using Method SOP.T.40.090 Terpenoid Analysis Via GC-MS. Analytes ISO						
ALPHA-CEDRENE	.02	%	ND		Pending						
	.02	%	ND								
LPHA-BISABOLOL	.02	/0	/5		A \						

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sal Pastor, Ph.D.

Lab Director

State License # n/a ISO Accreditation # 17025:2017

12/29/2020

Signature

Signed On